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Abstract

Distributed data analysis without revealing the individual data
has recently attracted significant attention in several applica-
tions. A collaborative data analysis through sharing dimen-
sionality reduced representations of data has been proposed
as a non-model sharing-type federated learning. This paper
analyzes the accuracy and privacy evaluations of this novel
framework. In the accuracy analysis, we provided sufficient
conditions for the equivalence of the collaborative data anal-
ysis and the centralized analysis with dimensionality reduc-
tion. In the privacy analysis, we proved that collaborative
users’ private datasets are protected with a double privacy
layer against insider and external attacking scenarios.

Introduction
Background
Recently, the problem of real-life data availability for ma-
chine learning and data analysis applications came to the
forefront of actual research challenges. In particular, use-
cases that pertain to sensitive personal information or cor-
porate secrecy can benefit from the ability to process dis-
tributed data without revealing it to other parties.

Various methods have been proposed over recent years,
involving sharing a machine learning model that is collec-
tively trained among several parties. In the present work,
we analyze an alternative method of distributed and privacy-
preserving data analysis that does not require sharing the
machine learning model. The non-model-sharing approach
has certain advantages over model-sharing methods: (a)
maintaining the secrecy of particular model architecture; (b)
protection from model poisoning attacks; (c) avoiding iter-
ative communications necessary for machine learning train-
ing; (d) option to outsource data analysis to a third party or
a data analysis competition.

The collaborative data analysis considered in this pa-
per had been previously proposed in (Imakura and Saku-
rai 2020; Imakura, Ye, and Sakurai 2020). However, the
method’s proper accuracy and privacy analysis were lacking.
In present work, we fill in this gap by providing conditions
for equivalence of the data analysis in centralized and dis-
tributed settings, as well as conducting a thorough privacy
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analysis and disclosure risk evaluation of the collaborative
data analysis.

Main purposes and contributions
The accuracy and privacy analyses are essential in practical
use of the collaborative data analysis. In this paper, we an-
alyze the equivalence of the collaborative data analysis and
the centralized analysis with dimensionality reduction. We
also analyze the privacy of the private dataset against insider
and external attacking scenarios.

The main contributions of this paper are summarized as
follows:

• We provided the sufficient condition for equivalence of
the collaborative data analysis and the centralized analysis
with dimensionality reduction.

• We proved that, in the collaborative data analysis, the pri-
vate dataset is protected based on a double privacy layer
against insider and external attacking scenarios.

• We demonstrated numerical evaluations for the accuracy
and privacy analyses.

Related Work
The problem of deriving insights from data while maintain-
ing the privacy of individual data records was first addressed
in the context of Data Mining and Knowledge Discovery in
Databases (KDD) (Agrawal and Srikant 2000) and conse-
quently formed a large body of literature known as Privacy-
Preserving Data Mining (PPDM). This field studies data-
sanitizing operations, which can offer quantifiable privacy
guarantees, while maintaining data utility for a variety of
downstream analytical tasks, including supervised and un-
supervised machine learning (Mendes and Vilela 2017).

As there are multiple definitions of what constitutes pri-
vacy and how it should be measured, distinct privacy guar-
antees and methods of privacy production became known
in the literature as privacy models. Most influential privacy
models that emerged from PPDM are k-anonymity, pro-
posed by Samarati and Sweeny (1998), and ε-differential
privacy, introduced by Dwork (2008). K-anonymity protects
users’ data from linkage attacks, ensuring that released data
has at least k identical records. ε-differential privacy, on the
other hand, guarantees that the inclusion of any record in



the dataset will not change the output of data mining oper-
ations by more than ε, thus preventing membership infer-
ence attacks. Both privacy models are theoretically sound,
deployed in practice, and legislatively recognized. However,
there are significant shortcomings that call for the develop-
ment of alternative notions of privacy. Thus, k-anonymity is
proven to be NP-hard (Verykios et al. 2004) and not attain-
able on high dimensional and sparse datasets (Narayanan
and Shmatikov 2006). Similarly, providing record-level ε-
differential privacy is not suitable for modern deep learning
applications (Zhao, Chen, and Zhang 2019), as the amount
of perturbation required diminishes data utility.

With the advancement of highly parameterized machine
learning models, the focus of data privacy research shifted
towards designing model architectures and sanitizing model
parameters to enable Privacy-Preserving Machine Learn-
ing (PPML). One particularly successful approach had been
Federated Learning proposed by McMahan et al. (2017).
It is a machine learning framework that allows distributed
training of deep learning models through the averaging of
gradient descent steps taken on private datasets. Analogous
algorithms were introduced for numerous machine learning
models and various distributed settings, forming what be-
came known as Federated Learning Systems (Li, Wen, and
He 2019). Although currently, PPML cannot provide a for-
mal privacy guarantee, as PPDM does, it satisfies privacy
requirements through the data minimization approach, by
sharing only the information necessary to the particular ana-
lytical task (Kairouz et al. 2019). Additionally, PPML is of-
ten combined with encryption schemes to prevent inference
from intermediary results of the computation.

The collaborative data analysis (Imakura and Sakurai
2020; Imakura, Ye, and Sakurai 2020), the method con-
sidered in this paper, is positioned in between the two ap-
proaches to privacy-preserving data analysis. It shares with
PPDM the focus on data transformation and the release of
sample-vise information, which can be further explored for
hidden relations and patterns. At the same time, it employs
the information-minimization approach of PPML through
the dimensionality reduction operation on the original data.
Moreover, the shared intermediate representations can be
formed by hidden layers of deep neural networks, strongly
relating our method to the PPML domain.

Privacy-preserving properties of dimensionality reduction
were previously explored in several papers. Thus, Tai et
el. (2018), demonstrated that dimensionality reduction on
average increases the value of k in k-anonymity privacy
model, although it does not perform it reliably. Similarly,
Nguyen and colleagues (2020) developed a ε-DR privacy
framework of measuring the information loss of dimen-
sionality reduction operations analogous to ε-differential
privacy. Formal privacy guaranteed were demonstrated for
particular methods of dimensionality reduction, such as
non-metric multidimensional scaling (MDS) (Alotaibi et al.
2012) and random projections (Liu, Kargupta, and Ryan
2005). Moreover, specialized methods of dimensionality re-
duction were developed to satisfy certain privacy models, for
instance differential-private Principal Component Analysis,
and differential-private Linear Discriminant Analysis (Jiang

et al. 2013). Since Data Collaboration method assumes an
arbitrary dimensionality reduction function applied at the
user’s side, in practical applications such methods can be
chosen to satisfy necessary privacy standards.

To the best of our knowledge, Data Collaboration is
the only method so far offering collaborative data analysis
through sharing dimensionality reduced representations of
data and integration of such representations in a unified sub-
space. In this work, for the first time we propose privacy
guarantees as well as utility measures of the transformed
collaborative representations of data.

Collaborative data analysis
Distributed data analysis
Let m and n denote the numbers of features and training data
samples. In addition, let X = [x1,x2, . . . ,xn]

T ∈ Rn×m

and Y = [y1,y2, . . . ,yn]
T ∈ Rn×ℓ be the training dataset

and the corresponding ground truth. The n data samples are
partitioned into c parties as follows:

X =


X1

X2

...
Xc

 , Y =


Y1

Y2

...
Yc

 . (1)

Then, the i-th party has partial dataset and the corresponding
ground truth,

Xi ∈ Rni×m, Yi ∈ Rni×ℓ.

A motivating example could be found in distributed med-
ical data analysis. An analysis only using the dataset in each
medical institution, i.e., individual analysis may not be suf-
ficient for generating a high-quality prediction result due to
insufficiency and imbalance of the data samples. If we can
centralize the datasets from multiple institutions and analyze
them as one dataset, i.e., centralized analysis, then we expect
to achieve a high-quality prediction. However, it is difficult
to centralise the original medical data samples with those
from other institutions due to confidentiality concerns. Such
kind of distributed data analysis is also essential in other ap-
plications, e.g., financial and manufacturing data analysis.

Outline of the collaborative data analysis
The collaborative data analysis has been proposed in
(Imakura and Sakurai 2020; Imakura, Ye, and Sakurai 2020)
as a method of distributed data analysis. A practical opera-
tion strategy regarding privacy and confidentiality concerns
is also introduced. Here, we briefly introduce the algorithm
based on the practical operation strategy.

In the practical operation strategy, the collaborative data
analysis is operated by two roles: user and analyst. The users
have the private dataset Xi and the corresponding ground
truth Yi and want to analyze them without sharing Xi. Each
user individually constructs a dimensionality reduced inter-
mediate representation and centralize it to analyst. To allow
each user to use individual function for generating the in-
termediate representation, analyst transforms again the cen-
tralized intermediate representations to an incorporable form



called collaboration representations. For constructing the
incorporable collaboration representations, users generate a
shareable anchor dataset and centralize its intermediate rep-
resentation to analyst. Then, the collaborative representation
is analyzed as one dataset.

Training phase First, all users generate the same anchor
dataset Xanc ∈ Rr×m, which is a shareable data consist-
ing of public data or dummy data randomly constructed, and
partition it by features. Then, each user constructs the inter-
mediate representations,

X̃i = fi(Xi) ∈ Rni×m̃i , X̃anc
i = fi(X

anc) ∈ Rr×m̃i ,

where fi denotes a linear or nonlinear row-wise mapping
function and centralize the intermediate representations to
the analyst. A typical setting for fi is a dimensionality reduc-
tion, with m̃i < m, including unsupervised methods (Pear-
son 1901; He and Niyogi 2004; Maaten and Hinton 2008)
and supervised methods (Fisher 1936; Sugiyama 2007; Li
et al. 2017; Imakura et al. 2019). For privacy and confiden-
tiality concerns, the function fi should be set as
• The private data Xi can be obtained only if anyone has

both the corresponding intermediate representation X̃i

and the mapping function fi or its approximation.
• The mapping function fi can be inferred only if anyone

has both the input and output of fi.
At the analyst side, the mapping function gi for the col-

laboration representation is constructed satisfying

X̂anc
i = gi(X̃

anc
i ) ∈ Rr×m̂ s.t. X̂anc

i ≈ X̂anc
i′ (i ̸= i′),

in some sense. For computing gi, authors of (Imakura and
Sakurai 2020; Imakura, Ye, and Sakurai 2020) introduced a
practical method via a total least squares problem when gi is
linear and also indicated an idea when gi is nonlinear.

Then, the obtained collaboration representations X̂i =

gi(X̃i) can be analyzed as one dataset,

X̂ = [X̂T
1 , X̂

T
2 , . . . , X̂

T
c ]

T ∈ Rn×m̂,

with the shared ground truth Yi using some supervised ma-
chine learning and the deep learning methods. The functions
gi and h are returned to the i-th user.

Prediction Phase Let Xtest
i ∈ Rsi×m be a test dataset

of the i-th party. Then, for prediction phase, the predictive
result Y test

i of Xtest
i is obtained by

Y test
i = h(gi(fi(X

test
i )))

via the intermediate and collaboration representations.

Accuracy analysis
We analyze the accuracy of the collaborative data analysis
for the simple case that the mapping functions fi and gi are
linear, i.e.,

X̃i = fi(Xi) = XiFi, Fi ∈ Rm×m̃ (rank(Fi) = m̃),

X̂i = gi(X̃i) = X̃iGi, Gi ∈ Rm̃×m̃ (rank(Gi) = m̃).

Here, for simplicity, we assume that the dimensionality of
X̃i does not depend on i. Also, the matrices Gi are computed
as introduced in (Imakura and Sakurai 2020; Imakura, Ye,
and Sakurai 2020), that is,

min
Gi∈Rm̃i×m̂

c∑
i=1

∥Z − X̃anc
i Gi∥2F, (2)

where Z ∈ Rr×m̃ is set as a column orthogonal matrix
whose columns are the left singular vectors corresponding
to the m̃ largest singular values of a matrix

[X̃anc
1 , X̃anc

2 , . . . , X̃anc
c ] = Xanc[F1, F2, . . . , Fc].

Theoretical evaluation for accuracy
In this paper, we analyze the accuracy of the collaborative
data analysis compared with the centralized analysis with
dimensionality reduction B ∈ Rm×m̃ based on the norm∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣XB −


X1F1G1

X2F2G2

...
XcFcGc


∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

F

/∥X∥2F

=

c∑
i=1

∥XiB −XiFiGi∥2F/∥X∥2F. (3)

With the anchor dataset Xanc preserving statistics of X , we
evaluate the accuracy (3) by

c∑
i=1

∥XiB −XiFiGi∥2F/∥X∥2F

≈
c∑

i=1

∥XancB −XancFiGi∥2F/(c∥Xanc∥2F)

≤
∑c

i=1 ∥XancB − Z∥2F + ∥Z −XancFiGi∥2F
c∥Xanc∥2F

.

Under the assumption that fi are linear, we have X̃i =
XiFi, where Xi ∈ Rni×m and Fi ∈ Rm×m̃. Let F =
[F1, F2, . . . , Fc] and

XancF = UΣV T = [U1, U2]

[
Σ1

Σ2

] [
V T
1

V T
2

]
,

F = UFΣFV
T
F = [UF1, UF2]

[
ΣF1

ΣF2

] [
V T
F1

V T
F2

]
be singular value decompositions of matrices XancF and
F . Here, Σ1,ΣF1 ∈ Rm̃×m̃ are the diagonal matrices cor-
responding to m̃ largest singular values. Note that Z = U1.
Then, we have

∥Σ2∥2F = min
rank(X̃)=m̃

∥XancF − X̃∥2F

≤ ∥XancF −XancUF1ΣF1V
T
F1∥2F

≤ ∥Xanc∥2F∥F − UF1ΣF1V
T
F1∥2F

= ∥Xanc∥2F∥UF2ΣF2V
T
F2∥2F

= ∥Xanc∥2F∥ΣF2∥2F.



Algorithm 1 Collaborative data analysis

Input (for user side): Xi ∈ Rni×m, Yi ∈ Rni×ℓ, Xtest
i , individually

Output (for user side): Y test
i (i = 1, 2, . . . , c).

user side (i) analyst side

———- Training phase ———-
1: Generate Xanc

i and share to all users
2: Set Xanc

3: Generate fi
4: Compute X̃i = fi(Xi) and X̃anc

i = fi(X
anc)

5: Share X̃i, X̃
anc
i and Yi to analyst → Get X̃i, X̃

anc
i and Yi for all i

6: Construct gi from X̃anc
i for all i

7: Compute X̂i = gi(X̃i) for all i
8: Set X̂ and Y

9: Analyze X̂ and get h as Y ≈ h(X̂)
10: Get gi and h ← Return gi and h to user

———- Prediction phase ———-
11: Compute Y test

i = h(gi(fi(X
test
i )))

Using this inequality, the norm (2) can be bounded by

min
Gi

c∑
i=1

∥Z −XancFiGi∥2F

=

c∑
i=1

min
Gi

∥Z −XancFiGi∥2F

≤
c∑

i=1

∥Gi∥2F min
G−1

i

∥ZG−1
i −XancFi∥2F

≤
(
max

i
∥Gi∥2F

)
min
G−1

i

∥Z[G−1
1 , G−1

2 , . . . , G−1
c ]

−Xanc[F1, F2, . . . , Fc]∥2F
=

(
max

i
∥Gi∥2F

)
∥Σ2∥2F

≤
(
max

i
∥Gi∥2F

)
∥Xanc∥2F∥ΣF2∥2F.

Therefore, the accuracy of the collaborative data analysis (3)
can be evaluated by ∥Σ2∥2F and ∥ΣF2∥2F. Note that the value
∥Σ2∥2F can be obtained at the analyst side.

This bound provides the following theorem.

Theorem 1. If the mapping functions satisfy

R(F1) = R(F2) = · · · = R(Fc), rank(XancFi) = m̃,
(4)

the predictive results of the collaborative data analysis is
mathematically equivalent to that of the centralized analysis
with dimensionality reduction F1G1.

Proof. The condition (4) provides ΣF2 = O, then we have

F1G1 = F2G2 = · · · = FcGc,

that proves the theorem.

Numerical evaluation for accuracy
Here, we provide numerical evaluation of the accuracy anal-
ysis. We used a 10-class classification of handwritten digits
(MNIST) (LeCun 1998), where m = 784. We set the num-
ber of parties as c = 4 and the number of samples for each
party as ni = 50.

Let B ∈ R784×25 be a mapping function generated by
PCA using all the training dataset X . We then set

Fi = BE
(1)
i + ε∥B∥FE(2)

i , i = 1, 2, . . . , c,

with E
(1)
i ∈ R25×25 and E

(2)
i ∈ R784×25 whose entries

are normally distributed random numbers. We used a kernel
version of ridge regression (K-RR) (Saunders, Gammerman,
and Vovk 1998) with a Gaussian kernel for analyzing the
collaboration representation. The bandwidth σ of the Gaus-
sian kernel is set based on the local scaling (Zelnik-Manor
and Perona 2005). We set the regularization parameter for
K-RR to λ = 0.1. The anchor data Xanc is constructed as
a random matrix and r = 2, 000. Then, we evaluate the fol-
lowing four values,

τ1 = ∥Σ2∥F/∥Σ1∥F,
τ2 = ∥ΣF2∥F/∥ΣF ∥F,

τ3 =

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣XF1G1 −


X1F1G1

X2F2G2

...
XcFcGc


∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
F

/∥XF1G1∥F,

τ4 = 1−NMI(Y test
CDA, Y

test
CA ),

where, in τ4, the value NMI(Y test
CDA, Y

test
CA ) ∈ [0, 1] denotes

the normalized mutual information (NMI) between the pre-
diction results of test dataset Xtest of the collaborative data
analysis and the centralized analysis with dimensionality re-
duction F1G1.



Figure 1: Scatter plot matrix and correlation coefficients for
log(τi).

All the numerical experiments were performed on Win-
dows 10 Pro, Intel(R) Core(TM) i7-10710U CPU @
1.10GHz, 16GB RAM using MATLAB2019b.

First, we perform the methods 10 times with ε = 0, that
is R(Fi) = R(Fi′), but Fi ̸= Fi′ for i ̸= i′. The obtained
average values are

τ1 = 8.42× 10−16, τ2 = 2.24× 10−16,

τ3 = 1.44× 10−13, τ4 = 0.00,

that mean the collaborative data analysis obtains the same
result as the centralized analysis with the dimensionality re-
duction, i.e., Y test

CDA = Y test
CA . This result supports Theorem 1.

Next, we perform the methods 500 times with random
ε ∈ [10−2, 10−6] and evaluate correlation coefficients of
log(τi). Figure 1 shows the scatter plot matrix and corre-
lation coefficients for log(τi), which demonstrates that the
accuracy of the collaborative data analysis regarding τ4 has
a strong correlation between τ1, τ2 and τ3. Therefore, from
this result, we observed that the accuracy of the collabora-
tive data analysis τ4 can be evaluated well by τ1 in practice.
Note that τ1 can be obtained at the analyst side.

We can also observed from Figure 2 that τ4 is roughly
bounded by

τ4 ≤ c
√
τ1

(
⇔ log(τ4) ≤

log(τ1)

2
+ log(c)

)
with some constant c. Note that c = exp(0.5) in Figure 2.

Remarks on accuracy analysis
From the above analysis, we observed that
• If Fi satisfy the sufficient condition (4), the collaborative

data analysis achieves the same result of the centralized
analysis with dimensionality reduction.

• The accuracy of the collaborative data analysis compared
with the centralized analysis with dimensionality reduc-
tion can be evaluated by ∥Σ2∥F in practice.

Figure 2: Scatter plot of log(τ4) v.s. log(τ1) and its rough
bound log(τ1)/2 + 0.5.

Note that, in order to obtain (approximately) the same pre-
dictive results as the centralized analysis with dimensional-
ity reduction, we do not need to use the same mapping func-
tions fi, but use different functions with (approximately) the
same range space.

Privacy analysis
For the analysis, this paper considers the privacy of the pri-
vate data Xi of each user in the collaborative data analysis.
Note that any information of the test data Xtest

i does not
have to be shared to others; see Algorithm 1.

Attacks for the data Xi can be classified into (i) attacks
to infer the characteristics of the training data; (ii) attacks
to infer the training data Xi itself; and (iii) attacks to infer
whether a data sample is in the training dataset or not, so-
called the membership inference attack.

This paper considers the privacy of the data Xi itself,
rather than the characteristics of the data. We also shortly
discuss the privacy against the membership inference attack.

Privacy definitions of dimensionality reduction:
ε-DR privacy
Here, we introduce two dimensionality reduction (DR) pri-
vacy definitions: ε-DR privacy introduced in (Nguyen et al.
2019) and its variant, to evaluate the degree to which pri-
vacy is preserved through dimensionality reduction. Let
f : x ∈ Rm → x̃ ∈ Rm̃ (m > m̃) be a dimensional-
ity reduced function and f† be a reconstruction function of
f . Then, we evaluate degree of privacy preservation using
dist(x,x′) with a certain distance measure dist(·, ·), where
x′ = f†(f(x)).

The function f satisfies the ε-DR privacy regarding the
expected value, if we have

E[dist(x,x′)] ≥ ε1 (5)

for each i.i.d. input sample x. The value ε1 depends on f
and is always larger than 0 with m > m̃.

Also, a function f satisfies the ε-DR privacy regarding a
sample set X = {x1,x2, . . . ,xn}, if we have

min
x∈X

dist(x,x′) ≥ ε2. (6)

The value ε2 depends on f and a set of samples X . There-
fore, since ε depends on X , ε2 is possible to be 0 even if
m > m̃.



Attacking scenarios
In this paper, we consider the following two attacking sce-
narios: insider and external attacks.

• Insider attacks. Here, the users and analyst will strictly
follow the strategy, but they try to infer the private data
Xi.

• External attacks. Here, we consider a man-in-the-middle
attack scenario where an attacker eavesdrops the infor-
mation exchanged among users and analyst and infer the
private data Xi.

Privacy against the honest-but-curious analyst
Theorem 2. For the collaborative data analysis, an honest-
but-curious analyst cannot infer the private dataset Xi of
the users, unless analyst does not collude with user(s).

Proof. For a privacy of Xi against the honest-but-curious
analyst, each user shares the intermediate representations X̃i

and X̃anc
i to analyst. Here, we consider the possibility of

recovering Xi from X̃i and X̃anc
i .

If analyst has a mapping function fi, analyst can infer Xi

by solving
X̃i = fi(Xi).

However, the function fi is private in the collaborative data
analysis and also cannot be inferred by analyst, because an-
alyst only has the output of fi, that is the intermediate rep-
resentations, but has no input data of fi, if analyst does not
collude with user(s). Note that the function fi is constructed
by some dimensionality reduction method with the private
data Xi. The function fi depends on Xi, so even if the di-
mensionality reduction method is identified, fi itself cannot
be inferred.

Thus, analyst cannot obtain the private data Xi from the
intermediate representations, that proves the theorem.

Privacy against the honest-but-curious users
Theorem 3. For the collaborative data analysis, an honest-
but-curious users cannot infer the private dataset Xi of a
particular user against collusion of up to c− 2 users.

Proof. For a privacy of Xi against other users, each user
shares the local anchor data Xanc

i to other users. Also, each
user obtain the functions gi and h from analyst that is con-
structed based on information of private data of other users.

First, we consider the possibility of recovering the pri-
vate data from Xanc

i . The local anchor data does not con-
tain the original Xi, but may preserve some useful infor-
mation. Here, the local anchor data is constructed by users
themselves using e.g., GAN and autoencoder with data
augmentation. Users can control the containing informa-
tion although it may have a trade-off relationship between
the performance. Note that the collaborative data analysis
works well even using random anchor data as demonstrated
in (Imakura and Sakurai 2020; Imakura, Ye, and Sakurai
2020). Therefore, users cannot obtain the private informa-
tion of Xi from Xanc

i .

Next, we consider the possibility of recovering the pri-
vate data from gi and h. When c − 1 users i ̸= i′, where
the total number of users is c, are malicious and they col-
lude together to retrieve information of the private dataset of
the remaining (victim) user i′, the colluding users have the
function h and all Xi, fi, gi (i ̸= i′). In this case, the func-
tion gi (i ̸= i′) and h are constructed by Xi, fi (i ̸= i′) of
the colluding users and Xi′ of the victim user. Therefore, the
private data Xi′ of the victim user will be inferred by solv-
ing an inverse problem. On the other hand, when the c − 2
users collude, the obtained functions gi and h of the collud-
ing users are affected by remaining two users with equal im-
portance. Therefore, users cannot infer each private dataset
Xi of the victim users.

Thus, an honest-but-curious users cannot infer the private
dataset of a particular user against collusion of up to c − 2
users, that proves the theorem.

Privacy against collision of analyst with users
Theorem 4. If user(s) and analyst collude in the collabora-
tive data analysis, the privacy of Xi is preserved regarding
ε-DR privacy definitions (5) and (6) of each fi.

Proof. If user(s) and analyst collude, then they can obtain
both the input Xanc and output X̃anc

i of fi. In this case, they
can infer fi satisfying

X̃anc
i = fi(X

anc).

Therefore, using the inferred fi, they can infer Xi from X̃i.
However, since fi is a dimensionality reduced function, that
is m > m̃i, the privacy is still preserved regarding ε-DR
privacy definitions (5) and (6) of fi. In other words, the exact
data Xi cannot be recovered from X̃i, even using fi.

Privacy against the external attacks
Using secure data transmission protocols such as Transport
Layer Security (TLS), in which the transferred informa-
tion is encrypted using the private key of the involving par-
ties, the collaborative data analysis also protects the private
dataset Xi against the man-at-the-middle attackers. Note
that, in this case, we do not use secure multi-party computa-
tions, but just use encrypted communication for non private
data.

In the case that we do not use secure data transmission
protocols, the situation is almost the same as the case that
users and analyst collude. That is, man-at-the-middle attack-
ers can infer fi from Xanc and X̃anc

i and can infer Xi; how-
ever, the privacy is still preserved regarding ε-DR privacy
definitions (5) and (6) of fi.

Numerical evaluation for privacy analysis
Here, we provide numerical evaluation of the worst-case pri-
vacy analysis, i.e., the situation of Theorem 4. Let Bi ∈
Rm×mi be a matrix for dimensionality reduction for Xi as

X̃i = XiBi, Bi ∈ Rm×mi .



Table 1: Trade-off relationship between ε-DR privacy and
prediction accuracy.

down-sampling min Ave. Ave.
parameter ε ε-DR (7) # of samples ACC
0.0 7.36× 10−6 100.00 92.8
0.0001 2.07× 10−4 99.97 92.8
0.001 1.01× 10−3 99.75 92.8
0.01 1.00× 10−2 97.50 92.8
0.1 1.00× 10−1 76.85 91.7
0.2 2.00× 10−1 56.43 90.3
0.3 3.00× 10−1 39.35 88.7
0.4 4.00× 10−1 25.84 86.1
0.5 5.00× 10−1 15.98 81.4

Centralized analysis 1000.00 93.6
Individual analysis 100.00 75.5

Let Xi = [x
(i)
1 ,x

(i)
2 , . . . ,x

(i)
ni ]

T. Then, if Bi and the center
µi ∈ Rm of dataset Xi are stolen, Xi is inferred by

X ′
i = [x

(i)′

1 ,x
(i)′

2 , . . . ,x(i)′

ni
]T = X̃iB

†
i + 1µT

i (I −BiB
†
i ),

where B† is the pseudo-inverse of B and 1 = [1, 1, . . . , 1]T.
As a ε-DR privacy regarding a sample set (6), we set

min
x∈X

dist(x,x′) = min
i,j

∥x(i)
j − x

(i)′

j ∥2
∥x(i)

j ∥2
. (7)

Then, we use a down-sampling technique which removes
training data samples satisfying (7) < ε by changing ε and
evaluate a trade-off relationship between (7) and a prediction
accuracy of the collaborative data analysis.

We used MNIST again. The dimensionality reduction ma-
trix Bi is constructed by PCA using each Xi. We set c =
10, ni = 100 and mi = 25 for parameters. Other settings of
numerical evaluation are the same as used in the numerical
evaluation for accuracy analysis.

Table 1 shows the trade-off relationship between a mini-
mum ε-DR privacy (7), average number of samples after the
down-sampling technique in each party, and average of pre-
diction accuracy (ACC) of 10 trials. We also show averages
of ACC for the centralized and individual analyses.

This result shows that, by the down-sampling technique,
we can increase the value of ε-DR privacy (7) without loss of
ACC; see the case of ε = 10−2. Also, if the predictive accu-
racy is allowed to decrease slightly, it can take a larger value
of ε-DR privacy (7); see the case of ε = 0.2. These results
mean that a small number of samples significantly reduce
the values of ε-DR privacy (7), while these samples do not
significantly affect the predictive results. Additionally, even
with a larger ε, e.g., ε = 0.5, the predictive accuracy (ACC)
of the collaborative data analysis is still higher than that of
the individual analysis.

Remarks on privacy analysis
The collaborative data analysis has the following double pri-
vacy layer for protection of the private data Xi.

• No one can have the private data Xi because fi is private
under the protocol (Theorems 2 and 3).

• Even if fi is stolen, the private data Xi is still protected re-
garding ε-DR privacy definitions (5) and (6) (Theorem 4).

For satisfying ε-DR privacy definitions (5) and (6) with
certain quantities ε1 > 0 and ε2 > 0, we need to pay at-
tention to the construction of fi. Dimensionality reduction
method satisfying ε-DR privacy (5) with a given ε1 > 0
has been proposed in (Nguyen et al. 2019). For satisfying
ε-DR privacy (6) with a given ε2 > 0, we can use a down-
sampling technique, which removes data samples satisfying
dist(x,x′) < ε2, or a constrained dimensionality reduction
method, which adds (6) as a constrain in optimization.

We also observed from our numerical evaluation that the
down-sampling technique can take a larger value of ε-DR
privacy (7) with small decreasing of ACC.

Here, we also shortly discuss the privacy against the mem-
bership inference attack. The membership inference attacks
involve constructing multiple reference datasets and observ-
ing the change in the output of the constructed model ac-
cording to the presence or absence of the target data sam-
ples. Therefore, they are only feasible in scenarios when in-
dividual dimensionality reduction functions fi are leaked in
the collaborative data analysis. To secure data collaboration
from the collusion of users in applications where member-
ship inference is a concern, specialized dimensionality re-
duction algorithms providing Differential Privacy, such as
in (Jiang et al. 2013), can be also considered.

Conclusions
In this paper, we analyzed the accuracy and privacy of a non-
model sharing-type federated learning, so-called collabora-
tive data analysis.

From the accuracy analysis, we provided the sufficient
condition (4) for equivalence of the collaborative data anal-
ysis and the centralized analysis with dimensionality reduc-
tion. We also provided a criteria τ1 for evaluating accuracy
of the collaborative data analysis and numerically evaluated
them.

From the privacy analysis, we proved that, in the collabo-
rative data analysis, the privacy of the private dataset is pre-
served based on a double secureness against insider and ex-
ternal attacking scenarios. We also evaluated the trade-off
relationship of privacy and accuracy and showed that the
down-sampling technique can take a larger value of ε-DR
privacy (7) with small decreasing of prediction accuracy.

In the future, we will further analyze the accuracy and pri-
vacy of the collaborative data analysis for more complicated
situations, e.g, usage of nonlinear dimensionality reduction
function and the case of vertical and horizontal data distri-
bution, with numerical evaluation in real-world problems.
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