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Risk and Advantages of Federated Learning
for Health Care Data Collaboration

Anna Bogdanova'; Nii Attoh-Okine, F.ASCE?; and Tetsuya Sakurai®

Abstract: This paper explores the problem of data collaboration in health care, which is the one of the critical infrastructure sectors
designated by the Department of Home Security. Limitations to data sharing in health care obstruct the development of a new generation
of medical technology powered by artificial intelligence (AI). Collaborative machine learning helps to overcome these limitations through
training models on distributed data sets without data sharing. Among other approaches to collaborative machine learning, federated learning
in recent years has demonstrated multiple advantages. However, it had been developed and tested in a highly distributed data environment,
which is different from the typical cases of health care data collaboration. The objective of this paper is to validate the known advantages of
federated learning and to assess possible risks in a small multiparty setting. The experiments show that federated learning can be successfully
applied in a multiparty collaboration setting. However, with a small number of parties, it becomes easier to overfit to each local data so that the
averaging steps have to occur more frequently. In addition, for the first time, the risks of a membership inference attack were assessed for
different methods of collaborative machine learning. DOI: 10.1061/AJRUA6.0001078. © 2020 American Society of Civil Engineers.

Introduction

The last decade has witnessed a rapid advancement of digital tech-
nology due to the data explosion and recent breakthroughs in ma-
chine learning. These breakthroughs continue to generate much
value across different domains by enabling autonomous technology
and getting insights from Big Data. Meanwhile, some fields are
experiencing data-related barriers to leveraging new technology.
The biggest problem arises from data privacy concerns in the fields
related to public infrastructure and health care. In these domains,
data cannot be easily shared; thus, gathering it in one place for ma-
chine learning applications is prohibitive. At the same time, training
machine learning models in isolation has the dangers of introducing
bias in critical decision making. Machine learning models trained
on a data set absorb representations and relations reflected in that
data set and are prone to make costly mistakes when faced with
less-represented data of minorities or rare events.

These challenges are especially relevant to the health care field.
An increasingly large amount of medical information becomes
available in computable form but cannot leave hospital servers with-
out threatening patient confidentiality. Meanwhile, there are strong
incentives to combine data from several institutions to advance
medical research and train more generalizable predictive algorithms.
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A 2010 essay, Achieving a Nationwide Learning Health System,
proposed a federated learning system among hospitals, government
bodies, and research institutions where data are physically shared
on-demand among the members. The authors envisioned multiple
applications of such collaboration, such as to plan and design clini-
cal trials of a new drug, track the spread of an infectious decease
outbreak, monitor the safety of a new drug, or develop clinical
decision-support systems (Friedman et al. 2010). However, there
are several administrative and logistic barriers to the actual imple-
mentation of such a system. To state a few, partners have to imple-
ment shared standards of data accounting, establish a system of
access clearances, and secure the entire infrastructure for data trans-
fer from cyber attacks.

Recent developments in collaborative machine learning can
help to overcome these limitations by allowing one to train machine
learning models on distributed data sets without data sharing. This
paper offers an overview of existing methods of collaborative
machine learning, focusing on federated learning, which is gaining
popularity in the field. Then, a discussion introduces of risks and
benefits of such a method for the particular case of health care data
collaboration, supporting the findings with experiments on a toy
data set.

Methods of Collaborative Machine Learning

The idea behind collaborative machine learning is to train machine
learning models locally and only share the results of this training,
i.e., model parameters. The product of such collaboration is a
model equally optimized for disjoint sets of members’ data, which
can then be used by all members to make predictions on new data.

There are several techniques of aggregating the parameters to
produce a unified model developed for specific types of machine
learning algorithms. Regardless of the algorithms used, there are
three communication schemes that can be established between
the collaborators: model averaging, weight transfer, and federated
learning, schematically explained in Fig. 1.

In model averaging, individual models are trained on disjoint
sets of data, and only aggregated model parameters are shared
among the parties. One practical example of such system has
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Fig. 1. Methods of collaborative machine learning: (a) naive averaging; (b) weight transfer; and (c) federated learning.

been deployed by researchers from the MAASTRO clinic in the
Netherlands. Their experiment with a distributed machine learning
system among several oncology clinics in Europe produced a series
of publications along with downloadable prediction models in
radiation oncology. Researchers used a simple model averaging ap-
proach with a naive Bayes classifier and obtained a model that per-
formed slightly better than the baseline. These experiments were
conducted as a proof of concept that the distributed learning ap-
proach can be used to extract and employ knowledge from multiple
hospitals while being compliant with the various national and
European privacy laws (Jochems et al. 2017; Deist et al. 2017).

In the weight transfer approach, collaborators form a chain
where they train a model locally for some number of epochs, then
pass the parameters (weights) to the next member. For the model to
converge in such manner, this process has to repeat for several
cycles; thus, it is sometimes referred to in the literature as cyclical
weight transfer. One significant advantage of such a method is that
collaborators do not need a trusted third party to aggregate the
parameters of their trained models. However, the absence of the
third party makes it impossible to validate the unified model against
unseen data, and the only performance measure available is the
average of validation tests among the collaborators, which may
not represent the actual model performance. Practical application
of cyclical weight transfer had been explored by Chang et al.
(2018). Those authors experimented with several methods of col-
laborative deep learning for the classification of retina images from
the Kaggle Diabetic Retinopathy challenge. In particular, they com-
pared ResNet deep learning models trained by four clients in iso-
lation, in a centralized setting, and two collaborative settings: single
weight transfer and cyclical weight transfer. They found cyclical
weight transfer superior to other methods and observed the im-
provement of performance with the increase of the frequency of
weight transfers.

Federated learning was introduced by researchers at Google in
2016 for learning models on mobile devices in a highly distributed
setting (McMabhan et al. 2016). In this framework, a central server
creates an initial model and sends it to selected clients for training.
After some training time, clients call back to the server with deltas of
model parameters, which are then aggregated and used for updating
the central model. The process repeats many times, each time with a
different set of clients. This framework offers multiple advantages
for a distributed mobile network, such as communication efficiency
and robustness to clients dropping out. The federated learning algo-
rithm was, in particular, designed to overcome the following
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difficulties: (1) clients have an uneven amount of data; (2) distribu-
tion of data values differs with each client (non-IID data, i.e., not
independent and identically distributed); (3) the number of clients
is large, but participation of every client is not guaranteed; and
(4) the communication is limited, so minimization of the number
of communication rounds is often an objective.

In addition to the expanding adoption of federated learning
for highly distributed use cases, some researchers already consid-
ered it for solving the data immobility problem in medical data
analysis, although no practical deployment exists at this moment
to the best of the authors’ knowledge. For instance, Sheller et al.
(2018) applied federated deep learning for the open Brain Tumor
Segmentation Challenge (BRaTS). They tested the performance
of a federated algorithm against other methods of collaborative
learning and in various experimental configurations including non-
partitioned (centralized) data and a different number of data parti-
tions (from 4 to 32) as well as the real (unbalanced) distribution
of images among contributors to BRaTS data set. Their results
demonstrated the superiority of federated learning (FL) over other
methods over other methods in all distributed experimental settings
and competitive performance with the centralized model. Brisimi
et al. (2018) deployed federated learning to predict hospitalizations
for cardiac events from electronic health records. They designed an
original algorithm for federated optimization of support vector ma-
chine (SVM) classification model and tested it on different graph
topologies for 5 and 10 data partitions. They experimentally dem-
onstrated faster convergence and smaller communication overhead
compared with alternative methods while maintaining lossless per-
formance compared with a centralized model.

Federated learning, adjusted for to a multiparty setting, could be
a feasible solution for the data immobility problem in health care.
However, given the sensitive nature of medical data, the framework
has to be thoroughly tested, and data privacy guarantees provided
before it can be adopted for real health care applications.

Federated Learning Performance in a Multiparty
Setting

Unlike the typical federated learning setting where one service pro-
vider connects to the loose federation of clients, in a multiparty
setting, several entities accumulate data of their clients and seek
to enhance their data analysis through collaboration. Thus, the fol-
lowing disparities from the fully distributed setting are expected:
(1) data are much closer to being IID-distributed; (2) the number
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of participants is limited, but the participation of each member can
be guaranteed; (3) there are no strict constraints on communication
resource; and (4) with just a few participants, there is a bigger
danger of overfitting of the global model to local data sets. Hence,
some of the known advantages of federated learning might not be
applicable for the multiparty setting, and other alternatives should
be carefully considered.

In order to identify the advantages of federated learning for
health care data collaboration, first, a comparison of different
collaborative machine learning schemes is conducted, including
the alternatives to collaborative learning such as training models
individually or centralizing the data for model training. Then, an
exploration is made of functionality that is only provided by the
federated learning, and the experiments of McMahan et al. (2016)
are replicated to find out conditions in which the distributed model
converges to the global minimum for a small number of collabo-
rating parties, and in which it can reach the level of the nonfeder-
ated performance.

Experimental Setting

All of the experiments were conducted on the CIFAR10 data
set (Krizhevsky 2009). It consists of 60,000 small-resolution color
images in 10 classes: airplanes, automobiles, birds, cats, deer, dogs,
frogs, horses, ships, and trucks; it is often used for benchmarking
image classification algorithms.

A share of this data set consisting of 15,000 images was
evenly and randomly split among three users for training in a fed-
erated framework. The validation set consisted of holdout data of
10,000 images.

The same neural network architecture was used for all experi-
ments: two convolutional 5 x 5 layers with 32 and 64 channels,
each followed by a 2 x 2 MaxPool layer, then a fully connected
layer with 512 units, and a softmax output layer. This particular
convolutional neural network (CNN) architecture was chosen be-
cause it was used in the experiments of the original federated aver-
aging algorithm (McMahan et al. 2016), and because it offers good
performance on the CIFAR10 data set with a minimum amount of
trainable parameters.

Alternatives to Federated Learning

In order to be able to weight the benefits of federated learning de-
ployment against its costs and possible risks, it is important to assess
the viable alternatives. Apart from other methods of collaborative
learning described in the previous section, choices can be made

to centralize the data despite the privacy constrains, or to refuse col-
laboration and train an individual model instead.

Fig. 2 shows the convergence rates and validation accuracy of
alternative methods of collaborative machine learning. A central-
ized model was trained on 15,000 samples for 36 epochs with batch
size of 32. It fully converged to the training data (reached zero loss),
and peaked at 63% performance on the test data around Epoch 5,
after which the validation performance was decreasing. This signals
overfitting to the training data, which can be treated by one of a
many available techniques of regularization, for example by de-
creasing the number of trainable parameters or adding dropout
layers to model architecture. A regularized version of the central-
ized learning is shown by a dotted line, where each layer of train-
able parameters was followed by a dropout layer randomly
blocking of 25% of nodes.

Similarly, unregularized and regularized versions of the CNN
model were trained by the three clients separately, on 5,000 sam-
ples each and validated on the centralized set of 10,000 samples of
test data. The average performance of the three models is shown.
One can see that the rate of overfitting is much bigger even for the
regularized model, which often happens for the small training sam-
ples. When the parameters of separately trained models were aver-
aged, 61% validation accuracy was obtained, and a 0.44 loss on
trained data, the worst among all methods.

The weight transfer was implemented in a cyclical manner, with
each client training the model for two epochs and then sending the
trained parameters to the next client. The next client fine-tunes
these parameters to their data for the next two epochs, and this pro-
cess continues for the total of six full cycles. The results show that
this model converges much slower than the centralized version
while not reaching its validation accuracy benchmark. It is also
clear that the training process is rather unstable, with training loss
jumping each time the model parameters are transferred to the next
client. This effect can be even more pronounced in cases where the
data distribution between clients is not even, as seen by Sheller et al.
(2018).

This study’s implementation of federated learning followed the
FedAvg algorithm (McMahan et al. 2016). First, the initial model
parameters are randomly initialized and sent to each client. Then,
each client in parallel trains the model for one epoch with a batch
size of 32. After that, the differences between the initial and result-
ing model parameters from each training are averaged and applied
to update the initial model. This cycle is repeated for 36 epochs to
match the centralized model training. The results showed gradual
and steady convergence of the federated learning training, similar to
the regularized version of the centralized model. The federated
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Fig. 2. Alternative methods of collaborative machine learning.
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Fig. 3. Federated learning parameters in a multiparty setting.

learning approach in this study’s experiments achieved 65% vali-
dation accuracy, reaching the baseline of the centralized and regu-
larized model. Thus, the performance of federated learning in this
experiment may be considered lossless, i.e., there is no drop in per-
formance compared with the centralized model.

However, depending on the specifics of the data, its distribution
among the clients, and complexity of the model, the results of such
analysis might be different, and other methods can appear more
beneficial than federated learning. The goal for this experiment
was to show that federated learning can achieve results comparable
to the centralized setting, and thus can be considered even outside
the traditional highly distributed federated setting.

Federated Learning Parameters in a Multiparty Setting

One important advantage of the federated learning approach is its
communication efficiency (McMahan et al. 2016). Because the clients
are training their models in parallel, the number of training epochs and
batch sizes can be tuned so that less communication between the cli-
ents and the server is necessary for the global model convergence.

Fig. 3 shows the results of federated training with different
amounts of computation per client, in comparison with the baseline
model performance (best metrics achieved by the regularized non-
federated model). The amount of computation was controlled by
the parameter B, indicating a batch size (number of data records
to process before the model parameters get updated locally), and
parameter E, indicating the number of epochs (complete passes
through all data) each user makes before the communication round.
A bigger batch size indicates a smaller amount of gradient descent
steps that each client makes before the communication round.

In general, it was observed that increasing the amount of compu-
tation per client causes faster convergence on the training data, thus
leading to overfitting and lower results on validation data. This is con-
trary to the behavior of fully distributed data found by McMahan et al.
(2016), where the training runs with more local updates converged to
higher values of validation accuracy. At the same time, decreasing the
amount of computation per round, taking a batch size of 64 instead of
32 with one epoch step (E1 B32) had a notable regularization effect,
and this run achieved higher validation accuracy.

Data Privacy Concerns in Collaborative Machine
Learning

One necessary caution to acknowledge is that even without data
sharing, there is a possibility of unintended information leakage
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through the shared model. For instance, it has been shown that given
only the outputs of a classifier model, is it possible to reconstruct
model parameters and generate an image representative of each class
(Hitaj et al. 2017). This is known as the model inversion attack, and as
long as classes contain data of more than one individual, it does not
pose severe concerns from a data privacy perspective.

Another type of attack is a property inference attack, where the
adversary can infer some additional properties of the training data
unrelated to the intent of the classifier, for example, if there were
more men or women in a training set for predicting hospital readmis-
sions. Melis et al. (2019) demonstrated that this type of attack poses a
valid concern for collaborative learning because the properties can be
easily inferred from the model parameters that are exchanged be-
tween the collaborators. The present study does not focus on this type
of attack because it is directed against the data holder rather than an
individual represented in data. Moreover, federated learning offers a
defense against the attacks on shared model parameters in form of
secure aggregation (Bonawitz et al. 2016). With secure aggregation,
individual parameters cannot be accessed, so that the server or eaves-
dropper can only view average parameter values across all clients.

Finally, there is a membership inference attack that poses
serious privacy concerns for individuals (Shokri et al. 2017). In this
attack, an adversary given only the outputs of a model and some
data record can establish with a high degree of certainty whether
this data record was used to train the model. Previous research
demonstrated that federated learning is susceptible to insider mem-
bership inference attacks, and in the case of the small number of
clients, conventional protection mechanisms such as differential pri-
vacy cannot be applied (Truex et al. 2019). In the original federated
learning framework, membership inference is not a concern because
the knowledge of individual membership in a mobile network has
little information value. In a medical field, however, merely know-
ing if someone’s data appeared in the model training for predicting
the progression of some disease is a serious privacy breach.

This paper explores the relationship between different methods
of collaborative learning and different federated learning parame-
ters on the success of the membership inference attack. The authors
argue that a thorough analysis of the risks of membership inference
attack should be a major part of the decision-making process in
health care data collaboration.

Membership Inference Attack on Federated Learning

To stage the membership inference attack on collaborative learning,
this study followed the framework proposed by Shokri et al. (2017).
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Fig. 4. Precision of a membership inference attack on collaborative machine learning.

The goal of this attack is to infer if particular data entry was used
for training the target model. This type of attack uses target model
outputs, which are represented by a vector of probabilities that a
particular data entry belongs to each class.

The first stage of the attack is to assemble several shadow train-
ing sets with data that resemble the original training data but comes
from a disjoint set. In our case, the validation set of the 10,000
images of CIFAR10 was used. The shadow training set is then di-
vided into two parts: shadow training and shadow test. The shadow
training set is then used to run several imitations of the target model
and collect the prediction vectors that they produced. As a result,
the adversary obtains a set of prediction vectors for the data used in
training and pairs it with prediction vectors from the shadow test,
not used in training. A binary classifier is then trained to learn the
distinction between the two sorts of prediction vectors. Such a dis-
tinction is possible because of the different level of confidence that
the model reveals through prediction vectors when it is queried with
the data that it has seen versus the data it has not seen in training.
Finally, having the attack model, the adversary can get the output
from the target model on any data entry and classify this output as
being in or out of the target training set.

Previous research showed that several factors influence the suc-
cess of this kind of attack: overfitting of the target model, the num-
ber of classes, and the similarity of data within one class (Truex
et al. 2019). When the models are overfitting, their output classifies
the inputs from the training set with much bigger confidence than it
classifies the new entries, and the attack model can learn from this
difference. Similarly, more classification labels mean more features
in the attackers’ set; consequently, the attack model becomes more
sensitive to slight differences.

Fig. 4 presents the results of membership inference attacks
on the centralized baseline model and the different methods of col-
laborative learning. Following the original method, the success of
the attack is evaluated with the precision metrics, and the attack is
conducted separately for each of the 10 class labels.

As previously observed in the literature, attack precision varies
greatly according to the class of the data capturing the amount of
data-specific variation within each class. The present study also
found that all of the collaborative learning methods had lower at-
tack precision than the centralized model, with the model averaging
method the least susceptible to the attack. This effect can be ex-
plained by bigger disparities between the imitation model trained
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by an attacker and the actual target model trained in a collaborative
manner. Surprisingly, federated learning runs with larger amount of
computation per client, which were shown to be overfitting to the
training data, did not expose more susceptibility to the attack.

Although on average, the precision of the membership inference
was not exceeding 65% in all cases, the occasional high precision
of 80% for certain data classes can be a concern.

Conclusion

This work reviewed several variants of collaborative machine learn-
ing for health care data collaboration. Among other methods, fed-
erated learning is a fast-developing technology pioneered by
Google, which has demonstrated promising results in previous re-
search. However, federated learning was developed for a highly
distributed environment, where there are thousands of clients, each
holding a single sample of data. In contrast, data collaboration in
the medical field involves combining large sets of precollected pa-
tient data. Therefore, there is a need to experimentally test the per-
formance of federated learning in the environment more similar to
cases of medical data collaboration.

This study’s experiments showed that federated learning can be
successfully applied in a multiparty collaboration setting. It not
only reached the baseline of a centralized model but also had a
regularization effect on the training process. However, with a small
number of parties, it becomes easier to overfit to each local data so
that the averaging steps have to occur more frequently. In the con-
ducted experiments, configurations where the global model was
averaged at each local epoch of the training performed best. There-
fore, it was concluded that one of the main advantages of federated
learning, namely achieving communication-efficient training, can-
not be easily gained in multiparty settings.

Finally, to explore the privacy guarantees of the federated learn-
ing, the precision of membership inference attacks against the cen-
tralized baseline model were compared with different methods of
collaborative machine learning. It was observed that all of the col-
laborative learning methods had lower attack precision than the cen-
tralized model due to the regularization effect of model averaging
and the difficulty to imitate a collaboratively trained model.

Combining experimental results with the literature research,
the following advantages of federated learning for health care data
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collaboration have been identified: (1) it is possible to achieve loss-
less model convergence rates and validation accuracy; (2) it is ro-
bust to clients dropping out or highly imbalanced data shares; and
(3) it offers better privacy guarantees through secure aggregation
of model parameters. At the same time, it was found that not all
known advantages of federated learning can be gained in the small
multiparty setting. For instance, attempts to make communication
rounds less frequent can lead to overfitting to local data and should
be avoided.

Perhaps the biggest risk of federated learning for health care
data collaboration is the susceptibility to a membership inference
attack. This attack can be attempted by a central server, an eaves-
dropper, or an insider, and it explores the difference in model re-
sponses to known and unknown data samples. Because there is
currently no defense against such attack, the risks should be as-
sessed according to the properties of the training data. Higher risks
of the attack are associated with a bigger number of classification
labels and the higher in-class variation. In addition, the damage
from a potential membership inference should be properly
weighted.
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